Since in principle there is no reason why a particular system facility should not be used by a program, regardless of the language in which it is written, it is the practice of system facility specifiers to define an ‘abstract’ functional interface that is language independent. In this way, the concepts in a particular system facility may be refined by experts in that area without regard for language peculiarities. An internally coherent view of a particular system facility is defined, relating the system functions to each other in a consistent way and relating the system functions to other layers within the system facility, including protocols for communication with other objects in the total system.
However, if these two areas are standardized independently, it is not possible to guarantee that programs from one operating environment can be moved to another, even if the programs are written in a standard programming language and use only standard system facilities. A language binding of a system facility to a programming language provides language syntax that maps the system facility’s functional interface. This allows a program written in the language to access the system functions constituting the system facility in a standard way. The purpose of a language binding is to achieve portability of a program that uses particular facilities in a particular language. Examples of system facilities that have had language bindings developed for them are GKS, NDL, and SQL (see Bibliography). It is anticipated that further language binding development will be required. Some system facilities currently being standardized have no language bindings and additional system facilities will be standardized. There is a possibility of n × m language bindings, where n is the number of languages and m the number of system facilities.
The scope of this Technical Report is to classify language binding methods, reporting on particular instances in detail, and to produce suggested guidelines for future language binding standards.
Note that the language bindings and the abstract facility interfaces shall have a compatible run time representation, but the abstract facility does not necessarily have to be written in the host language. For example, if the application program is using a Pascal language binding and the corresponding facility is written in FORTRAN, there shall be a compatible run time representation in that operating environment. How this compatibility is achieved is outside the scope of these guidelines. This is generally a property of the operating environment defined by the implementor, and is reviewed briefly in this Technical Report.
Cross References:
ISO/IEC 1539-1:2010
ISO/IEC 1989:2014
ISO 6373:1984
ISO 7185:1990
ISO/IEC 7942-1
ISO 8651-1:1988
ISO 8651-2:1988
ISO 8651-3:1988
ISO/IEC 8651-4:1995
ISO/IEC 8652:2012
ISO 8805:1988
ISO 8907:1987
ISO/IEC 9075-1
ISO/IEC 9075-2
ISO/IEC 9075-3
ISO/IEC 9075-4
ISO/IEC 9075-11
ISO/IEC 9593-1
ISO/IEC 9593-3
ISO/IEC 9593-4
ISO/IEC 9899:2011
ISO/IEC 10206:1991
All current amendments available at time of purchase are included with the purchase of this document.